356 research outputs found

    Probing the MSSM Higgs Sector at an e-e- Collider

    Get PDF
    The theoretical structure of the Higgs sector of the Minimal Supersymmetric Standard Model (MSSM) is briefly described. An outline of Higgs phenomenology at future lepton colliders is presented, and some opportunities for probing the physics of the MSSM Higgs sector at an e-e- collider are considered.Comment: 14 pages, needs e-e-ijmpa.sty and psfig.sty, to appear in the Proceedings of e-e- 97, International Journal of Modern Physics A, Special Proceedings Issue, June 199

    Top-Down Approach to Unified Supergravity Models

    Full text link
    We introduce a new approach for studying unified supergravity models. In this approach all the parameters of the grand unified theory (GUT) are fixed by imposing the corresponding number of low energy observables. This determines the remaining particle spectrum whose dependence on the low energy observables can now be investigated. We also include some SUSY threshold corrections that have previously been neglected. In particular the SUSY threshold corrections to the fermion masses can have a significant impact on the Yukawa coupling unification.Comment: 19 pages, uuencoded compressed ps file, DESY 94-057 (paper format corrected

    Uplifted supersymmetric Higgs region

    Full text link
    We show that the parameter space of the Minimal Supersymmetric Standard Model includes a region where the down-type fermion masses are generated by the loop-induced couplings to the up-type Higgs doublet. In this region the down-type Higgs doublet does not acquire a vacuum expectation value at tree level, and has sizable couplings in the superpotential to the tau leptons and bottom quarks. Besides a light standard-like Higgs boson, the Higgs spectrum includes the nearly degenerate states of a heavy spin-0 doublet which can be produced through their couplings to the bb quark and decay predominantly into \tau^+\tau^- or \tau\nu.Comment: 14 pages; Signs in Eqns. (3.1) and (4.2) corrected, appendix include

    Critical and tricritical exponents of the Gross-Neveu model in the large-NfN_f limit

    Get PDF
    The critical and the tricritical exponents of the Gross-Neveu model are calculated in the large-NfN_f limit. Our results indicate that these exponents are given by the mean-field values.Comment: 8 pages, 8 figure

    Higgs Boson Bounds in Three and Four Generation Scenarios

    Full text link
    In light of recent experimental results, we present updated bounds on the lightest Higgs boson mass in the Standard Model (SM) and in the Minimal Supersymmetric extension of the Standard Model (MSSM). The vacuum stability lower bound on the pure SM Higgs boson mass when the SM is taken to be valid up to the Planck scale lies above the MSSM lightest Higgs boson mass upper bound for a large amount of SUSY parameter space. If the lightest Higgs boson is detected with a mass M_{H} < 134 GeV (150 GeV) for a top quark mass M_{top} = 172 GeV (179 GeV), it may indicate the existence of a fourth generation of fermions. The region of inconsistency is removed and the MSSM is salvagable for such values of M_{H} if one postulates the existence of a fourth generation of leptons and quarks with isodoublet degenerate masses M_{L} and M_{Q} such that 60 GeV 170 GeV.Comment: 7 pages, 4 figures. To be published in Physical Review

    Charged Leptons With Nanosecond Lifetimes

    Full text link
    Some extensions of the standard model contain additional leptons which are vectorlike under weak isospin. A class of models is considered in which these leptons do not appreciably mix with the known leptons. In such models, the heavy charged lepton and the heavy neutrino are degenerate in mass, and the degeneracy is broken by radiative corrections. The mass splitting is calculated and found to be very weakly dependent on the lepton mass, varying from 250 to 330 MeV as the mass varies from 100 to 800 GeV. This result is {\it not} affected significantly by inclusion in a supersymmetric model in spite of the additional loops involving the superpartners. As a result, this fairly general class of models has a charged lepton whose lifetime varies in the narrow range from 0.5 to 2.0 nanoseconds, and which decays into neutrals plus a very low energy electron or muon.Comment: 7 pages, revtex, 3 figures available upon reques

    Complete two-loop effective potential approximation to the lightest Higgs scalar boson mass in supersymmetry

    Get PDF
    I present a method for accurately calculating the pole mass of the lightest Higgs scalar boson in supersymmetric extensions of the Standard Model, using a mass-independent renormalization scheme. The Higgs scalar self-energies are approximated by supplementing the exact one-loop results with the second derivatives of the complete two-loop effective potential in Landau gauge. I discuss the dependence of this approximation on the choice of renormalization scale, and note the existence of particularly poor choices which fortunately can be easily identified and avoided. For typical input parameters, the variation in the calculated Higgs mass over a wide range of renormalization scales is found to be of order a few hundred MeV or less, and is significantly improved over previous approximations.Comment: 5 pages, 1 figure. References added, sample test model parameters listed, minor wording change

    Isospin Fluctuations from a Thermally Equilibrated Hadron Gas

    Full text link
    Partition functions, multiplicity distributions, and isospin fluctuations are calculated for canonical ensembles in which additive quantum numbers as well as total isospin are strictly conserved. When properly accounting for Bose-Einstein symmetrization, the multiplicity distributions of neutral pions in a pion gas are significantly broader as compared to the non-degenerate case. Inclusion of resonances compensates for this broadening effect. Recursion relations are derived which allow calculation of exact results with modest computer time.Comment: 10 pages, 5 figure

    Radiative Corrections to Neutralino and Chargino Masses in the Minimal Supersymmetric Model

    Full text link
    We determine the neutralino and chargino masses in the MSSM at one-loop. We perform a Feynman diagram calculation in the on-shell renormalization scheme, including quark/squark and lepton/slepton loops. We find generically the corrections are of order 6%. For a 20 GeV neutralino the corrections can be larger than 20%. The corrections change the region of μ, M2, tanβ\mu,\ M_2,\ \tan\beta parameter space which is ruled out by LEP data. We demonstrate that, e.g., for a given μ\mu and tanβ\tan\beta the lower limit on the parameter M2M_2 can shift by 20 GeV.Comment: 11 pages, JHU-TIPAC-930030, PURD-TH-93-13, uses epsf.sty, 6 uuencoded postscript figures, added one sentence and a referenc

    Higgs-boson production associated with a bottom quark at hadron colliders with SUSY-QCD corrections

    Full text link
    The Higgs boson production p p (p\bar p) -> b h +X via b g -> b h at the LHC, which may be an important channel for testing the bottom quark Yukawa coupling, is subject to large supersymmetric quantum corrections. In this work the one-loop SUSY-QCD corrections to this process are evaluated and are found to be quite sizable in some parameter space. We also study the behavior of the corrections in the limit of heavy SUSY masses and find the remnant effects of SUSY-QCD. These remnant effects, which are left over in the Higgs sector by the heavy sparticles, are found to be so sizable (for a light CP-odd Higgs and large \tan\beta) that they might be observable in the future LHC experiment. The exploration of such remnant effects is important for probing SUSY, especially in case that the sparticles are too heavy (above TeV) to be directly discovered at the LHC.Comment: Results for the Tevatron adde
    corecore